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I N T R O D U C T I O N  

A se l f - s imi l a r  plane problem of the theory  of e las t ic i ty  about a sys tem of radial  cracks ,  distributed 
uniformly in angle, being developed f rom a point at a constant velocity under antiplane deformation conditions 
is solved by the Smirnov-Sobolev  method of functionally invariant solutions [1-4]. 

The formulation under investigation can be considered as a model for  the mathematical ly  more  complex 
problem of plane deformation.  

In an unloaded x, y plane let a sys tem of 2n radial  slits s tar t  to be developed f rom the origin at a con- 
stant speed at the initial instant. The slit edges are loaded in such a way that the whole elast ic  space is sub- 
jected to antiplane deformation along the z axis. Hence, only w =w(x, y, t) - the z axis component of the dis-  
placement vec tor  - is not zero .  In this case the nonzero components of the s t r e ss  t enso r  have the following 
form: 

z~z = ~Ow/Oy; T= = ~taw/Ox. 

The function w sat isf ies the wave equation 

O~w/Ox 2 ~- 02w/Og s : b-~a2w(Ot~. (0.1) 

Let us examine a region of the x, y plane bounded by rays  passing through adjacent slits and the arc  of 
a shear  wave (Fig. 1). The solution of (0.1) which will sat isfy cer ta in  boundary conditions is sought in this 
domain. On the edges of the slits p= x2f~'~+y2 <v t; ~p=arctan (y/x)= 0; 7r/n s t r e s se s  are given, while compliance 
with the condition w=0  is required  on the sections vt <p <bt; ~=0.  The lat ter  resul ts  in some s y m m e t r y  con- 
ditions for the effective loads depending on the evenness o r  oddness of w relative to the angle bisector .  The 
boundary conditions on the wave depend on the kind of load and will henceforth be mentioned separa te ly  in 
each problem. 

w 1. Let us examine the case when the load on the slit edges is given in the form p =p 0f(p/bt) �9 k (k is 
the unit vec tor  of the z axis). This kind of loading cor responds  to the Broberg  problem [5]. As is known [2], 
the s t r e s s - t e n s o r  components ~'xy, ~yz and the rate of displacement ~v are hence homogeneous functions of 
the coordinates and t ime of zero  degree.  Using the method of functionally invariant solutions of the wave equa- 
tion, we find ~v in the fo rm 

w = ReU(z~), z~ : [ch(n([~ -- iq~))]-l; ch[~ = bt/p,  

where U(z 2) is some analytic function. 

The domain shown in Fig. 1 goes over  into the upper half-plane Y2 -> 0 in the z 2 =x 2 + iy 2 plane. The edges 
of the slits along the rays  go over  into segments  (0, x21) and (-x21 , 0) of the x 2 axis, respect ively,  for ~ =0 
a n d  cp =re in ,  where x21 = [cosh(narccosh(b/v))] -i .  The arc  of the wave p=bt ,  0 -< ~ -< v/n  goes over  into the rays  
(1, +~), ( - ~ ;  - 1 ) .  At infinity of the z 2 plane is the point of intersect ion between the b i sec to r  of the angle ~/n 
and the arc  of the wave. 
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Let us find the boundary conditions which the function U(z 2) sat isf ies at Y2 =0. Since the body. is assumed 
to be in the  res t  state ahead of the wave, ~v=0 on the  wave [1] o r  ~v=lRe U(z~) =0 at y2=0, - ~ <  x 2 < - l ,  +1< 
x 2 <+~ .  The s t r e s se s  ~p =0 and ~p = l r / n , w =  0 a t w = R e  U(z2)=0 at y2=0, x21 < [x 2 [<1, ac ta t  the edges of the slits,  
f rom which 

he re 

Im U'(z2)  = (4po / l z )br ( t  + r2)-2/ ' (~) ldzl /dz~[ for: yu = O, 0 < [x2l < x21; 

= 2 ?0 + z ,  = ro' ; , =  [I - V I  = p /b t  

Therefore ,  we obtain a mixed boundary-value problem for the function U'(Z2)o Here Im U'(z 2) is given in 
the interval (-x21 , +x21) and Re U'(z 2) = 0 outside. The general  solution of this problem can be written down by 
using the Ke ldysh-Sedov  formula  [6]. Let us examine in detail a par t i cu la r  form of the loading f(O =const .  
Here, as in the general  ease, two vers ions  are  possible,  namely; ~ is anevenfunet ionofx2,  whieh eorresponds  
to"foldingof  the angle," o r  ~v is an odd function of x2, which cor responds  to " tors ion of the angle." Let us r e -  
quire ~ to be bounded at the vertex of the angle and at the intersect ion between the b isector  of the angle ~/n 
and the are of the wave. 

In the f i rs t  case,  we find analogously to [2] that the flmction 

�9 2 U' (z2) = A~z. (z2 -- x~i) -3/2 

sat isf ies  the boundary conditions, has the required  o rde r  of the singulari ty at the noses of the si l ts ,  andhas the 
co r r ec t  behavior at the points z 2 =0 and z 2 = % corresponding to the ver tex of the angle 0 under  investigation 
and the point of intersect ion of the b isector  of the angle 7r/n with the arc  of the wave in the physical  plane (see 
Fig. 1). 

The coefficient A is found f rom the condition that ~'yz =P0 on the edge of the slit 0 <x 2 <x21. In this prob-  
lem Ty z (x, y, t), exactly as ~r y, t), is a homogeneous function of zero measurement  which satisfies the wave 
equation. Hence, by using the method of functionally invariant solutions it can be represen ted  as 

"~y z = R e  T(z~),  (1.1) 

where T(z 2) is some analytic function. 

The equality Tyz = #aW//OY permi t s  relating the functions T(z 2) and U(z2): 

( d r / d z ~ ) ( d z J d z ) ( d z / d t )  = ~ t ( dU /dz2 ) ( d zJdz ) ( d z /dy ) ,  

where z =b -1 cosh(n-~arccoshz2-1).  Hence, for  dT/dz  2 we obtain 

d r / d z . ,  = - -  A i z ~  V b  -2-~ - -  z z �9 (z22 - -  x21) -3 /2 ,  (1.2) 

where by integrating along the contour pass ing along the upper edge of the slit (x21 , 1) and bypassing the point 
z 2 =x21 around an infinitesimal semic i rc le ,  we obtain 

t 

Po = A I H v  ~ zdz : A ,~ l~ / l ) .  (1.3) 
�9 v/b ~ V'[eh (narch (bz/v))] - 2 -  x21 

Using the equalities (1.1)-(1.3), we find that 1-y z near  the nose of the s l i t  %~ --  N ~ ( x  - -  v t ) - ' / 2  has the asymptotic 
for q~ = O, ( x  - -  v t ) / (v t )  << l, where 
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r (i/2 + t/2n) ~ / l ~ )  2 -~  n--I V -t- (1.4) V ~  (1 ~2.)3 (1 -- ~) N I l N l c = V - ' ~ / 2 .  3rV l ~ ~  (l_~_L aS) an_t/2 t__a2 n , 

a = b/v. [1 - -  ] / t -  (v/b)2]. 

Hence, Nlc =p0q-~- f~  r (1  + l / 2 n ) r - l ( 1 / 2  + 1/2n)4"/ is  the value of the s t r e s s - i n t e n s i t y  coefficient  for  a s ingu-  
la r i ty  at the nose of the sli t  in the s ta t ic  p rob l em about loading a s t a r  c r a c k  with s l i ts  of length l =vt  for  an 
analogous loading by the shea r  s t r e s s  Po. The expres s ion  (1.4) is s impl i f ied  substant ia l ly  for  n =1, which 
co r re sponds  to an isolated c rack:  

.V~/N,c = E-,() /-  i _ (v/b)~)V-i_ (v/b)~ N , c =  po]/'l~, 

where E (x) is the complete  el l ipt ic  in tegra l  of the second kind. 

In case  of loading the s ides  of the angle by a load of different sign, the d i sp lacement  ra te  4r is an odd 
function with r e spec t  to the angle b i sec to r  o r  the x2=0 axis in the z 2 plane. Then the function dU/dz2,which 
sa t i s f i e s  all  the boundary conditions and the additional conditions at the points z2=0 and z2=oo , will be 

2 - - i  dUIdz~_ = A l i ( z  2 - -  x21) -3/~-, A1 Pox21b(~x3t~.) , 
b/v 

~1 zdz 

Here  the coefficient  A 1 is found f r o m  the s ame  conditions as above. F o r  a singularit.y in the s t r e s s  field at 
the noses  of the s l i t s ,  the coefficient  r e f e r r e d  to the cor responding  s tat ic  value equals  

where  

r (i + 1/2n) l/-~la~_ . (rib)-3~2 t + a 2n 1/~"~-_,2 " f i  N.JN.,.~=]/-~I~,~. r ( i / 2+l /2n )  t + a , l / ~ l  --(vlb) ~, (1.5) 

N~c = poW/(2un) -1 r ( l l 2  § U2n) r - ' ( i  § t /2n)  

In the pa r t i cu l a r  case  of motion of an isola ted c r a c k  with n =1, we obtain f rom (1.5) 

1V21N~c = V- I  --(v/b)2; N~c =]/ '~po/g.  

The dependences (1.4) and (1.5) of the s t r e s s - i n t e n s i t y  coeff icients  for  a s ingular i ty  in the ra te  of growth 
of the slit  length a re  shown in Figs.  2 and 3 by cu rves  1-4, cor responding  to the values  n = l ,  2, 5, 7. Super -  
imposed  for  compar i son  in these  s ame  graphs  by dashed curves  is the dependence N/N c = ~  which holds 
under  antiplane deformat ion  for  a semiinfini te  moving slit  in the case  of loading by t ime- independent  forces  
[7]. It is seen in Figs.  2 and 3 that the f ini teness of the s l i ts  in the p rob l em under  considera t ion  r e su l t s  in an 
inc rease  in the rat io  Ni /Nic  (i =1, 2), where  the l a rge r  the number  of  c r acks  in the sys t em,  the higher  the de-  
g ree .  

w A c lass  of p rob lems  in which the d isp lacements  are  homogeneous functions of the coordinates  and 
t ime  was cons idered  in [1, 4], devoted to s e l f - s i m i l a r  p rob l ems  of the plane theory  of e las t ic i ty .  

For  the p rob l em  under  considera t ion  this case  is r ea l i zed  if the l oadon the  s l i t  edges is r ep re sen t ab l e  
in the f o r m  p =P0t0/t . f ( o / (b t ) ) . k .  Fo r  the analytic function U(z2), whose r ea l  pa r t  is the d isp lacement  w(x2, Y2), 
we obtain the K e l d y s h -  Sedov boundary-value  p rob l em in the z 2 plane: 

Im U'(%) =- 2pobto/~t./(~)(l § r2)-lldzl/dz~] for y~ = 0, 0 < ]x~l <x~l; 

Re U'(z2) = 0 for y~ = 0, lx~ I > x~l. 

The solution of this p rob l em  which p o s s e s s e s  the n e c e s s a r y  s ingular i ty  at the noses  of the s l i ts  and the c o r -  
rec t  behav ior  at infinity can be r e p r e s e n t e d  as 

dU/dz~ -- =~ 2 2 j i -~- r 2 jazx/az21 ds. 
V ~ 2 -  x21 , (~) 

- - X l l  

Let us  examine  a pa r t i cu l a r  f o r m  of the load: 

X21, 

! (~ )  = o, ~o < I~,I < ~ ,  
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where x~ = 2r~0 (1 + r20n)-~; r 0 = (b/v 0) [ 1 - 4 1 -  (v0/b)2l; v 0 - v .  For  symmet r i c  loading (folding of the angle), the 
coefficient of the s ingulari ty in the s t r e s s  field is given by the formula  

N~/N~c = 2 ] / ~  11Vb-~ �9 r (t/2 -}-, t/2n) a,~-~/2 ]/( i  -- a 2) (t -- a 2n) 
F (1 -~ l /2n)  ( t  + a2n) 3/2 ' 

ro 

1 -}- a 2n .~ (i  -~- r 2n) dr 
11 

2an J ( t - } - r  2) V ( a  - 2 n - r  2n)(a 2 n - r  2n) " 
O 

(2.1) 

In the case  of loading, for which the displacements  w(x, y, t) a re  uneven relat ive to the bisecting angle 
(torsion of the angle), the coefficient of the cha rac te r i s t i c  field is given by the formula 

NJN~c 
F (1/2 ~ t /2n)  1 -~- a 2n ' 

v0 

1. -~- a 2n ~" rndr 
12 

an J (1 -}-r2) V ( a  - 2 n  - - r 2 n ) ( a 2 n - - r  2n) ' 
0 

where Nlc and N2c in (2.1) and (2.2) are given by (1.4) and (1.5), but i t i s h e n c e n e c e s s a r y t o r e p l a c e  P0 by P0t0/t. 

Curves 1-5 in Fig. 4 show the change in the ratio N1/Nlc as a function of v /b  for n = l ,  2, 3, 4, 5, r e -  
spectively.  It is assumed that the s t r e s s e s  act along the whole length of the c racks ,  i.e., v 0 =v .  The integral  
I 1 is computed numerica l ly .  As is seen f rom the curves presented,  as n ~  oothe magnitude of the ratio N i / N l c ~  
1 for v / b < l .  

Curves  5 and 6 in Fig. 5 show the change in the ratio N2/N2c as a function of v /b  under the condition that 
the s t r e s s e s  act on the whole length of the crack.  Curve 5 corresponds  to n = l  and curve 6, to n=5 .  The 
integral  I z in (2.2) is computed numerica l ly .  

It is interest ing to examine the limit case obtained f rom (2.1) if v 0 is allowed to tend to zero ,  but hence 
P0~ ~o in such a way that 2P0V0t0=Q =const .  This case cor responds  to loading by lumped forces  acting at the 
ver t i ces  of wedges cut by c racks .  The express ion 

Nln = Q/~. V-n-~l) II --(v/b) 211/' V(i  --  a2n)/(l ~- a 2n) (2.3) 

is obtained for  the s t r e s s - in t ens i ty  coefficients at the ver t ices  of the c racks .  This express ion  is simplified 
substantially in the limit case n = 1 and n >> 1 and v /b  < 1: 

Nll =Q/~z.(2l)-i/~V-t - (v/b) ~ for n ~- t; (2.4) 

N1, = QI~- V - n / - ~ /  t - -(r ib)  2 for n>>l. 

The quantity N =Q/Tr . ~ - / ~  is the solution of the static problem of a s ta r  c rack  at whose ver t ices  of the angles 
the lumped forces  Q act. F r o m  this and f rom the equalities (2.3) and (2.4) it follows that the magnitude of the 
rat io Nm/N var ies  between [1-(v/b)2]l/2 f o r n = l  and [1-(v/b)2]l/a as n -~ ~ (Fig. 5, curves  1 and 4). Curves 
2 and 3 in Fig. 5 cor respond  to the values n=2  and 3. Computations p e r f o r m e d  by means of (2.3) showed that 
even for n = 4  the appropriate curve agrees  with the limit [1-(v/b)2]l/4 for prac t ica l ly  all values of v/b.  

The exact solutions obtained permit  a qualitative est imation of the influence of the loading method, the 
number  of c racks ,  and the velocity of the i r  motion in the development of a radical  sys tem of c racks  which 
originates  during the explosion of a high-explosive cord charge in a frangible medium. 
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